Radiation-induced extended free-volume defects in mixed ternary Ge-As/Sb-S glasses studied with PALS technique

O. I. SHPOTYUK^{a,b*}, J. FILIPECKI^b, V.O. BALITSKA^{a,c}

^aInstitute of Materials, Scientific Research Company "Carat", 202 Stryjska str., 79031 Lviv, Ukraine ^bInstitute of Physics, Jan Dlugosz University, Al. Armii Krajowej 13/15, Czestochowa 42201, Poland ^cLviv State University of Vital Function Safety, 35 Kleparivska str., 79023,Lviv, Ukraine

Under-coordinated topological defects caused by high-energy γ -irradiation can be a reason for significant changes in positron annihilation lifetime spectra of multicomponent chalcogenide glasses within ternary Ge-As(Sb)-S systems. In case of negatively-charged sulphur and arsenic atoms, the excess of free volume is quite enough to produce detectable input in defect-related channel of positron trapping, while under-coordinated negatively-charged germanium atoms are non-detectable with this technique because of low value of associated free volumes.

(Received November 7, 2008; accepted November 27, 2008)

Keywords: Chalcogenide glassy, Topological defects, Positron life-time spectra

1. Introduction

Chalcogenide glasses (ChG) are known can be effectively modified with external influences such as highenergy ⁶⁰Co γ -irradiation [1-3]. This unique ability has no exhaustive explanation up to now, but probably it is associated with high steric flexibility proper to a glassylike network with low average coordination (chalcogen S, Se and Te atoms are always two-fold-coordinated in normal uncharged state), relatively large internal free volume proper to all melt-quenched disordered solids like glasses and specific lp-character of chalcogen-related electronic states localized at a valence-band top [1].

It was shown previously that measurable changes of physical-chemical properties are mainly caused by specific structural defects proper to ChG, which appear in the form of negatively charged over- and under-coordinated atomic pairs having anomalous number of nearest neighbours [1,4-9]. In respect to their nature, these defects often called coordination topological defects appear in a glass-forming network in the result of covalent bond switching. One bond is destroyed by external factor, but another one appears in its vicinity keeping overall covalent bonding through whole bulk [1,7]. This process is accompanied by structural relaxation at the level of intermediate rangeordering with an appearance of additional free volume near negatively-charged under-coordinated atoms [8,9]. The appeared free-volume nanovoids contain two components, the first one being due to lack of one (destroyed) covalent chemical bond and the second one being due to bond-destroying structural relaxation between directly non-linked atoms (atomic displacements to stabilize a new bond configuration within glass-forming network) [10-13]. So these negatively-charged undercoordinated extended defects can be identified experimentally with nanovoid-sensitive technique.

Positron annihilation lifetime spectroscopy (PALS) is known to be one of the most suitable tools for this purpose [14].

In spite of their structural-chemical specificity, the PALS-detectable extended defects vary significantly even in binary ChG systems like to As-S, As-Se, Ge-S, Ge-Se [10]. Moreover, to identify correctly PALS characteristics of these defects, the specific features of initial free volume distribution in ChG should be accepted in respect to the known structural models. At the present, these models are more or less developed for simple stoichiometric binary $As_2S(Se)_3ChG$ [15,16].

In the case of mixed ChG with 2-, 3- and 4-fold coordinated atoms (such as S, As and Ge, respectively), three different types of coordination defects are possible with different probabilities in dependence on glass composition $-S_1$, As_2 and Ge_3 (the upper and lower indexes mean electric charge state and local atomic coordination or number of directly covalent-bonded neighbouring atoms, respectively) [10]. This work is aimed to testify the above extended defects in mixed ternary ChG of Ge-As-S and Ge-Sb-S systems with stoichiometric and non-stoichiometric cut-sections using PALS results treated within known one-state (non-defect) and two-state positron trapping models [14,17].

2. Experimental

The bulk ChG samples of ternary Ge-As-S and Ge-Sb-S systems were prepared by conventional meltquenching route [8]. The chosen glass compositions were stoichiometric and non-stoichiometric ones in respect to germanium sulphide allowing wide deviation in average coordination number Z (the number of covalent bonds per one atom of glass-forming structural unit provided all covalent bonds are fully saturated due to known 8-N rule [8]):

stoichiometric $(As_2S_3)_{0.6}(GeS_2)_{0.4}$, stoichiometric $(As_2S_3)_{0.4}(GeS_2)_{0.6}$, stoichiometric $(As_2S_3)_{0.1}(GeS_2)_{0.9}$, non-stoichiometric $(As_2S_3)_{0.6}(Ge_2S_3)_{0.4}$, non-stoichiometric $(As_2S_3)_{0.4}(Ge_2S_3)_{0.6}$, non-stoichiometric $(As_2S_3)_{0.2}(Ge_2S_3)_{0.8}$, stoichiometric $(Sb_2S_3)_{0.2}(GeS_2)_{0.8}$, non-stoichiometric $(Sb_2S_3)_{0.375}(Ge_2S_3)_{0.625}$, non-stoichiometric $(Sb_2S_3)_{0.125}(Ge_2S_3)_{0.875}$.

After synthesis, all ingots were sliced into 1.0-1.5 mm thick disks with 10-12 mm diameter and outer surfaces polished to a high optical quality.

To produce a detectable amount of extended defects, the prepared As-contained ChG were irradiated by γ -quanta to the dose of 2.8 MGy, while Sb-contained ChG were irradiated to 3.0 MGy dose. This treatment was performed in a stationary radiation field created in a closed cylindrical cavity by concentrically maintained ⁶⁰Co sources (the average energy of γ -quanta was 1.25 MeV).

The PALS measurements were performed with an ORTEC spectrometer using ²²Na source placed between two sandwiched ChG samples [10-13]. The obtained data were treated with LT computer program [18], the best results corresponding to one- or two-component fitting procedures. In the latter case (within two-state positron trapping model [14,17]), the numerical values of trapping parameters (bulk positron lifetime τ_b , average positron lifetime τ_{av} and positron trapping rate κ_d) were calculated using short and long positron-trapping lifetimes τ_1 and τ_2 , as well as component intensities I₁ and I₂ (I₁+I₂=1) [14,17]:

$$\tau_{av} = I_1 \tau_1 + I_2 \tau_2, \tag{1}$$

$$\kappa_{d} = I_{2} \left(\frac{1}{\tau_{1}} - \frac{1}{\tau_{2}} \right)$$
 (2)

In addition, the difference $(\tau_2 - \tau_b)$ was accepted by us as a size measure for positron-trapping extended defects in terms of equivalent number of singlet vacancies, as well as the τ_2/τ_b ratio was accepted as parameter corresponding to the nature of the created extended defect [14]. The defectfree (bulk) positron lifetime τ_b was calculated as

$$\tau_{\rm b} = \left(\frac{I_1}{\tau_1} + \frac{I_2}{\tau_2}\right)^{-1} = \frac{\tau_1 \tau_2}{I_1 \tau_2 + I_2 \tau_1} \,. \tag{3}$$

3. Results and discussion

PALS characteristics describing positron annihilation in the studied ChG before and after γ -irradiation are gathered in Table 1 and 2, respectively.

Table 1. Positron trapping characteristics of non-irradiated ChG.

ChG composition	Ζ	Fitting parameters			Positron	
				trapping		
					modes	
		τ_1	τ_2	I_2	$\tau_{av.}$	κ_{d}
		ns	ns	a.u.	ns	ns^{-1}
$(As_2S_3)_{0.6}(GeS_2)_{0.4}$	2.48	0.36	-	-	0.36	-
$(As_2S_3)_{0.4}(GeS_2)_{0.6}$	2.53	0.36	-	-	0.36	-
$(As_2S_3)_{0.1}(GeS_2)_{0.9}$	2.63	0.36	-	-	0.36	-
$(As_2S_3)_{0.6}(Ge_2S_3)_{0.4}$	2.56	0.33	-	-	0.33	-
$(As_2S_3)_{0.4}(Ge_2S_3)_{0.6}$	2.64	0.34	-	-	0.34	-
$(As_2S_3)_{0.2}(Ge_2S_3)_{0.8}$	2.72	0.24	0.39	0.57	0.32	0.9
$(Sb_2S_3)_{0.375}(Ge_2S_3)_{0.62}$	52.65	0.18	0.39	0.43	0.27	1.3
(Sb ₂ S ₃) _{0.125} (Ge ₂ S ₃) _{0.87}	52.75	0.17	0.39	0.51	0.28	1.6

In case of non-irradiated stoichiometric As_2S_3 -GeS₂ ChG, only one PALS component with $\tau_1 = 0.36$ ns can be distinguished whichever the sample composition. After γ irradiation, the second long-lived PALS component having τ_2 close to 0.39 ns appears, this component being attributed to free-volume extended defects with trapping rate κ_d increasing with Ge content in the studied ChG.

Table 2. Positron trapping characteristics of γ-irradiated ChG.

ChG composition	Z	Fitting parameters			Positron trapping modes	
		τ ₁ ns	τ ₂ ns	I ₂ a.u.	τ _{av.} ns	κ _d ns ⁻¹
$(As_2S_3)_{0.6}(GeS_2)_{0.4}$	2.48	0.28	0.39	0.33	0.32	0.3
$(As_2S_3)_{0.4}(GeS_2)_{0.6}$	2.53	0.29	0.39	0.38	0.33	0.4
$(As_2S_3)_{0.1}(GeS_2)_{0.9}$	2.63	0.28	0.39	0.47	0.33	0.5
$(As_2S_3)_{0.6}(Ge_2S_3)_{0.4}$	2.56	0.27	0.39	0.42	0.32	0.5
$(As_2S_3)_{0.4}(Ge_2S_3)_{0.6}$	2.64	0.34	0.39	0.45	0.33	0.5
$(As_2S_3)_{0.2}(Ge_2S_3)_{0.8}$	2.72	0.24	0.39	0.67	0.34	1.2
$(Sb_2S_3)_{0.375}(Ge_2S_3)_{0.625}$	2.65	0.18	0.40	0.42	0.28	1.2
$(Sb_2S_3)_{0.125}(Ge_2S_3)_{0.875}$	2.75	0.17	0.40	0.46	0.28	1.3

In case of non-irradiated non-stoichiometric As_2S_3 -Ge₂S₃ ChG, one PALS component with lower $\tau_1 = 0.33$ -0.34 ns can be distinguished for both As-enriched samples, while in Ge-enriched $(As_2S_3)_{0.2}(Ge_2S_3)_{0.8}$ sample two PALS components appear. After irradiation, all samples of this system demonstrate two PALS components with similar τ_2 close to 0.39 ns. But, in contrast to As-enriched ChG samples having relatively low trapping rate κ_d (less than 0.5 ns⁻¹), Ge-enriched sample shows higher trapping rate $\kappa_d = 1.2$ ns⁻¹.

Whichever stoichiometry, all irradiated As-contained ChG allowing two-component deconvolution procedure demonstrate very similar ($\tau_2 - \tau_b$) difference close to 0.07-0.08 ns and ratio $\tau_2/\tau_b \cong 1.3$ character for bi- and/or tri-

vacancies [14]. It means that in all these cases the preferential positron traps are of the same nature.

At the same time, Sb-contained ChG of both stoichiometric and non-stoichiometric cut-sections show two-component PALS results either before or after irradiation. There were no significant differences in the second PALS component caused by γ -irradiation as it testified from a comparison of positron trapping modes in Table 2. The character ($\tau_2 - \tau_b$) differences in Ge-Sb-S ChG are greater in comparison to Ge-As-S ChG being at the level of 0.15 ns and τ_2/τ_b ratio are close to 1.6-1.7 testifying in a favour of more extended nature of existing positron-trapping defects (probably, tri- and tetra-vacancies or even vacancy-like complexes [14]).

The above results testify that negatively-charged under-coordinated extended defects with an associated free volume differ significantly in As- and Sb-contained ChG within chosen ternary systems. To explain this difference, let's consider the corresponding extended defects more precisely in dependent on ChG composition.

It is well known that some internal nanoscale voids (nanovoids) always appear in chemical compounds containing chalcogen S, Se, Te and/or pnictogen P, As, Sb, Bi atoms due to specificity in electron density distribution of covalent bonds around them [10,19]. Sometimes, this kind of free volume in ChG is called the bond-free solid angle volume as it proposed by M. Kastner [19]. This feature is well illustrated in Fig. 1, 2, 3 for electricallyneutral two-, three- and four-fold coordinated atoms, respectively (these atomic configurations in ChG can be conditionally marked as S_2^0 , As_3^0 and Ge_4^0 , the upper index denotes charged state and lower one denotes neighbouring directly covalent-bonded atomic coordination).

By accepting that two covalent bonds of S atom with other neighbouring atoms (As, for example) create a bond angle of about 100° [8,19], it can be easily shown that almost 70% of the drawing sphere is the bond-free solid angle. The real value of this volume can be somewhat reduced, accepting that lone-pair lp-charge density is additionally distributed in this space. Since the typical single vacancy volume in ChG is as high as 25-30 Å³ [8], the maximum value of an associated free volume around each normally-coordinated chalcogen atom is ~15 Å³.

Fig 1. Local bond-charge density distribution around sulphur S_2^0 atom within normally-coordinated covalentbonded ChG network.

Fig. 2. Local bond-charge density distribution around arsenic As_3^0 atom within normally-coordinated covalentbonded ChG network.

Fig. 3. Local bond-charge density distribution around germanium Ge_4^0 atom within normally - coordinated covalent-bonded ChG network.

These nanovoids are introduced into structural network along with each chalcogen atom whichever the network nature (crystalline or amorphous).

The similar consideration shows that in group-V elements (pnictogens), which are three-fold coordinated, these nanovoids are smaller with a character volumes of ~10 Å³ [10,19]. Within this estimation, it is accepted that all three covalent chemical bonds around pnictogen atoms are located only in one half of a coordination sphere [19]. At the same time, the four-fold coordinated Ge atom with sp³-hybridised covalent bonding has no accompanied free-volume nanovoids [19].

By putting within this concept that bond charge cone is distributed uniformly between existing "dumb-bells" of covalent bonds (see Fig. 1,2,3), it can be estimated that free-volume additives caused by one-bond lack reaches ~14 % from overall free volume for S_1^- (Fig. 4), ~17 % for As_2^- (Fig. 5) and ~25 % for Ge₃⁻ extended defects (Fig. 6). Therefore, the overall free volume per one negativelycharged defect will be 43 Å³ for S_1^- surrounded by As atom, 33 Å³ for As_2^- surrounded by two S atoms and only 12 Å³ for Ge₃⁻ surrounded by three S atoms. Thereby, within this approach, we can treat the studied extended defects as structural anomalies in ChG having three types of irregularities:

- the wrong number of neighbouring directly covalentbonded atoms (over- or under-coordinated) in respect to non-defect glass-forming backbone normally coordinated due to 8-N rule [8,9],

- the excess of uncompensated local electrical charge (negative in case of under-coordination or positive in case of over-coordination),

- the accompanied free volume due to lack of one covalent chemical bond in the vicinity of negatively-charged under-coordinated atom (see Fig. 4-6).

Fig. 4. Extended defect in ChG based on negativelycharged under-coordinated chalcogen atom C_1 (the accompanied free volume due to lack of one covalent bond is light-distinguished).

Fig. 5. Extended defect in ChG based on negativelycharged under-coordinated chalcogen atom P_2^- (the accompanied free volume due to lack of one covalent bond is light-distinguished).

Two latter features occur noticeable effect on PALS data because of expected significant changes in the positron-trapping modes of ChG due to local electrical charge (negative) and free volume excess. In strong respect to the above consideration, we can assume that input of S_1^- extended defects having the greatest free volume will be the most essential into defect-related PALS channel in ChG, while only negligible under-margin effect is expected to be for Ge₃⁻ defects surrounded by three S atoms. Within covalent bond lengths balance in the studied

As(Sb)-Ge-S systems in respect to [8] (2.28 Å for S-As, 2.24 Å for S-Ge and 2.20 Å for S-S), we can estimate that the appeared S_1 -related free volume is 32 Å³ for sulphur surrounding, 43 Å³ for arsenic surrounding and 41 Å³ for germanium surrounding. In case of As_2^- defect in sulphur surrounding, this free volume is at the level of 33 Å³, while only 12 Å³ in case of Ge_3^- defect in the same sulphur surrounding.

Therefore, it should be noted that only S_1^- extended defects change significantly the measured PALS data, while As_2^- defects show only slight influence and Ge_3^- defects occur rather under-margin influence. This conclusion correlates well with experimental PALS results presented in Table 2.

Indeed, in case of Ge-As-S ChG, the appeared radiation-induced defects are of all types (S₁⁻, As₂⁻ and Ge₃⁻) [1,5]. This follows from high energetic barriers proper to both As-S and Ge-S glass-forming sub-systems [8]. Because of large associated free volume mainly for negatively-charged S₁⁻ and As₂⁻ defects (even in a case of their relatively small concentration near 5-7 % [1,4,5]), these radiation-structural transformations significantly modify measured PALS data. As a result, the positron trapping saturates in these defects giving a well-distinguished long-lived PALS component with τ_2 close to 0.39 ns in irradiated ChG (see Table 2).

In contrast, within Ge-Sb-S system, only negativelycharged Ge₃⁻ defects dominate in the irradiated samples, since Sb-related defects are supposed to be unstable because of low energetic barrier of backward defectannihilated dissociation in Sb-S sub-system [8]. But these Ge₃⁻ defects have too small associated free volume (near 12 Å³) to be detectable by PALS technique. As a result, there were no any significant changes in the measured PALS data (compare Table 1 and 2). This result well correlates with recent study of γ -induced structural transformations in glassy Ge-Sb-S using high-resolution X-ray photoelectron spectroscopy, showing only Ge₃⁻ defects in the structure of γ -irradiated samples [20].

Fig. 6. Extended defect in ChG based on negativelycharged under-coordinated chalcogen atom T_3^- (the accompanied free volume due to lack of one covalent bond is light-distinguished).

The greater $(\tau_2 - \tau_b)$ differences (close to 1.3 ns) and τ_2/τ_b ratio (close to 1.6-1.7) in Ge-Sb-S ChG can be well explained as character values proper to native positron-trapping extended defects. These non-defect free volumes appear in Ge-based ChG owing to geometrical specifics in their structure with interlinked corner- and edge-sharing tetrahedra [8].

It should be noted that, being strongly within twostate positron trapping model [14], the average positron lifetime τ_{av} increases after γ -irradiation in As-Ge-S ChG testifying in a favour of S_1^- defects preference. However, if different deconvolution procedures are explored (onecomponent saturated positron trapping in non-irradiated state and two-component positron trapping in afterirradiated state), the observed tendency attains opposite character. This is probably caused by different measurement statistics used for irradiated and nonirradiated ChG samples as it noted in [21]. To compare correctly defect-related positron trapping modes in the studied ChG, the same mathematical deconvolution route should be applied whichever the glass composition and irradiation conditions. In contrast, the two-component deconvoluted PALS trapping modes of Ge-Sb-S ChG show no significant radiation-induced changes in full respect to PALS-insensitive Ge₃⁻ defects preference.

4 Conclusion

Radiation-induced extended defects in ChG within ternary Ge-As-S and Ge-Sb-S systems can be identified using PALS technique, provided associated free-volume nanovoids are large enough to modify the measured PALS data. This condition satisfies well for Ge-As-S ChG with under-coordinated S_1^- and As_2^- coordination defects. In contrast, there are no significant free-volume-based extended defects in Ge-Sb-S ChG, showing only negligible irradiation effect on PALS data.

Acknowledgements

This work was carried out within official Agreement on Scientific-Technological Cooperation between Scientific Research Company "Carat" (Lviv, Ukraine) and Jan Dlugosz University of Czestochowa (Poland), supported by Ukrainian and Polish Ministries of Education and Science. The authors also acknowledge research support from Science and Technology Center in Ukraine under regular STCU Project No 3745.

References

 O. Shpotyuk, Radiation-induced effects in chalcogenide vitreous semiconductors.
 In: Semiconducting Chalcogenide Glass 1: Glass Formation, Structure, and Simulated Transformations in Chalcogenide Glassess.
 Ed. Fairman R. and Ushkov B. Elsevier Academic Press. 2004, 215.

- [2] A. I. Popov, L. A. Domoryad, N. I. Michalev, Phys. Stat. Sol. (a) **106**, 333 (1998).
- [3] A. I. Popov, N. I. Michalev, V. K. Shemetova, Phil. Mag. 47, 73 (1983).
- [4] O. I. Shpotyuk, Rad. Effects and Defects in Sol. 132, 393 (1994).
- [5] R. Golovchak, O. Shpotyuk, Phil. Mag. 85, 2847 (2005).
- [6] R. Golovchak, A. Kozdras, O.I. Shpotyuk, Sol. State Commun. 145, 423 (2005).
- [7] O. I. Shpotyuk, V. O. Balitska, Acta Phys. Pol. A92, 577 (2007).
- [8] A. Feltz, Amorphous and Vitreous Inorganic Solids, Mir, Moscow, 1986, 556.
- [9] N. F. Mott, E.A. Davis, Electronic processes in noncrystalline materials, Mir, Moscow, 1974. 472.
- [10] O. Shpotyuk, J. Filipecki, Free volume in vitreous chalcogenide semiconductors: possibilities of positron annihilation lifetime study, Ed. WSP, Czestochowa, 2003, 114.
- [11] O. Shpotyuk, A. Kovalskiy, R. Golovchak,
 A. Zurawska, H. Jain, Phys. Stat. Sol.
 (c) 4, 1147 (2007).
- [12] J. Filipecki, O. Shpotyuk, A. Ingram, A. Kozdras, L. Shpotyuk, M. Hyla, J. Phys. Chem. Sol. 68, 998 (2007).
- [13] V. Balitska, J. Filipecki, A. Ingram, O. Shpotyuk, Phys. Stat. Sol. (c) 4, 1317 (2007).
- [14] R. Krause-Rehberg, H.S. Leipner, Positron annihilation in semiconductors. Defect studies, Springer-Verlag, Berlin-Heidelberg-New York, 1999, 378.
- [15] M. A. Popescu, J. Non-Cryst. Sol. 35-36, 549 (1986).
- [16] M. Hyla, J. Filipecki, O. Shpotyuk, M. Popescu,
 V. Balitska, J. Optoelectron. Adv. Mater.
 9, 3177 (2007).
- [17] O. I. Shpotyuk, J. Filipecki, A. Kozdras, T. S. Kavetskyy, J. Non-Cryst. Sol. **326-327**, 268 (2003).
- [18] J. Kansy, Nucl. Instr. Meth. Phys. Res. A374, 235 (1996).
- [19] M. Kastner, Phys. Rev. B7, 5237 (1973).
- [20] A. Kovalskiy, H. Jain, A. Miller, R.Ya. Golovchak, O. I. Shpotyuk, Phys. Chem. B110, 2930 (2006).
- [21] J. Gebauer, F. Rudolf, A. Polity, R. Krause-Rehberg, J. Martin, P. Becker, Appl. Phys. A68, 411 (1999).

*Corresponding author: shpotyuk@novacs.lviv.ua